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ABSTRACT 

It is a commonplace observation that if one tries to extrapolate a function 
to points far away from the region where the function is known, the results 
may be very sensitive to slight changes in the known values. A numerical 
example is used to show how very serious this problem may become when 
one attempts to extrapolate the Born series for scattering by strong potentials. 

The subject of perturbation theory, and particularly the Born series 
for general scattering problems, is given very great weight in most stud- 
ies of quantum mechanics. As students we are told that the method is 
useful only when the perturbation is weak, yet so often we see the Born 
approximation used when the interaction is in fact strong. The excuses 
for this are that (a) the computation of a low-order Born approximation 
is the simplest calculation one can do, and (b) in some problems, e.g., 
quantum field theory, it may be the only well-definied procedure we 
have for doing any calculations at all. Recently there have appeared 
some very interesting attempts to build a proper theoretical basis for 
the use of Born calculations in strong interactions. In particular the 
analysis of Weinberg [l ] for the case of potential scattering has shown 

1 This work was supported in part by the Air Force Office of Scientific Research, 
grant AF-AFOSR-130-63. 
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what the divergence of the Born series really means. Now other authors 
[2, 31 are proposing to use such methods as the Padt approximation to 
carry the useful range of the Born series well beyond its ordinary limits. 
In this paper we shall suggest via the study of an example how un- 
practical this program may be. 

I. THE EXAMPLE 

For a numerical example we have studied the scattering by an attrac- 
tive Yukawa potential at zero energy. The Schrodinger equation is 

1 d” exp (-- r) --~ 
r dr2 ’ - g 

___- - k2 
r 

y(r) = 0, 

and the Born series for the scattering amplitude (purely s-wave at 
k = 0) is 

f(g) = 5 g’” T,,. (2) 
n-1 

In Appendix A we describe how the terms T, were calculated; the results 
are shown in Table I. The first four terms may be easily calculated ana- 
lytically, and we conclude that the computer outputs shown in this Ta- 
ble are accurate to six or seven figures. At first one would imagine that 
this list of terms of the Born series contains a great deal of useful in- 
formation. However, we shall now see that this is not the case. 

In Table I are also shown ratios of successive terms T,,, and we see 
that beyond n = 13 these ratios do not change (within the accuracy which 
we have available here). This may be understood as follows. We know 
[l] that the function f(g) has simple poles at those (positive) values 
of g for which the potential becomes just strong enough to accom- 
modate one more bound state. Suppose these critical values of g are 
ordered 

g, <gz<g,c..., (3) 

then we may expect to represent the scattering amplitude in the func- 
tional form 

’ f‘(g) _:~ - g y1 / 
I 

)‘2 
g - g, 

g-g r-L--+... 
2 g - g, 1 
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TABLE I 

COMPUTED VALUES OF TERMS OF THE BORN SERIES FOR ZERO ENERGY SCATTERING 

IN A YUKAWA POTENTIAL. ALSO SHOWN ARE RATIOS OF SUCCESSIVE TERMS 

n T7i & = TnIT.-I 
- ___-- 

1 1.00000000 
2 0.49999981 0.49999981 
3 0.28768183 0.57536387 
4 0.16989880 0.59057884 
5 0.10094108 0.59412477 
6 0.60060339 x 10-l 0.59500387 
7 0.35749587 x 10-l 0.59522785 
8 0.21281215 x 10-l 0.59528563 
9 0.12668721 x 10-l 0.59530063 

10 0.75417472 x 1O-2 0.59530454 
11 0.44896442 x lo-= 0.59530558 
12 0.26727114 x 1O-2 0.59530584 
13 0.15910809 x 1O-2 0.59530592 
14 0.94717993 x 10-a 0.59530593 
15 0.56386181 x 1O-3 0.59530591 
16 0.33567026 x 1O-3 0.59530589 
17 0.19982649 x 1O-3 0.59530592 
18 0.11895789 x 1O-9 0.59530593 
19 0.70816337 x 1O-4 0.59530588 
20 0.42157384 x 1O-4 0.59530590 
21 0.25096540 x 1O-4 0.59530592 

Equation (4) gives the following representation for the Born terms: 

~ - __ *?I = (g:;” + (gy)n + (g’,“,?z + ... ’ (5) 

so that for large n we expect the ratios 

& = *n/T,-1 = gil + O[kJgdnl (6) 

to approach gil quite rapidly as n increases. We can thus pick out from 
the tail end of Table I the value 

g, = + 1.679809, (7) 
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which is, to the best of our knowledge, the most accurate determination 
of this critical number. The residue is found to be 

Yl = 1.349179. (81 

We would now like to look at the higher terms of (4) by considering 

or 

(9) 

When we carry out this subtraction the lower half of the data in Ta- 
ble I disappears (to 7 or 8 figures), and what remains allows us to find 
the second pole to only a few tenths of 1% accuracy: 

g, = + 6.47, r2 == 0.780. (11) 

Again subtracting this second pole term, what remains is just enough 
to indicate that g, is around + 20 (to one significant figure). 

What conclusions do we draw from the above numerical game? 
The Born series is an expansion about g = 0. By knowing the analytical 
structure of the function f(g) we can use the terms T, to learn about 
f(g) outside the radius of convergence (gl) of the series; however, if 
we try to stretch too far away, the predictions become very sensitive to 
the accuracy with which the terms T, are known. (The tail wags the dog.) 
Now we turn to another method of using the data of Table I. 

II. THE PADS APPROXIMATION 

A popular method for extending the usefulness of a power series 
expansion is the Padt method [4]. At the Nth approximation we re- 
present the Born series (2) by the quotient of polynomials 

(12) 

where the coefficients a, and b, are determined by fitting the power 
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series expansion of P,(g) to the first 2N + 1 terms of (2). The results 
of this procedure are shown in Fig. 1. The heavy curve shows the cor- 
rect function f(g) as obtained by directly integrating the Schrodinger 
equation, and the double arrows indicate the positions of the first four 
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FIG. 1. Successive Pad.5 approximations to the zero energy scattering amplitude for 
a Yukawa potential, as a function of the potential strength parameter g. The heavy 
curve is the exact result. 

poles. The Pad6 approximants were determined using as inputs the 
values of T,, given in Table I. P, is seen to locate the first pole (gl) fairly 
well, but it is not useful much beyond that point. The curve Pz is better, 
giving g, accurate to about 15%. All the higher order approximants, 
N = 3 through 10, are contained within the shaded region. The separate 
curves do not converge smoothly within this region, but rather jump 
about; this is presumably due to the imperfect numerical accuracy 
of the input numbers T, and the numerical process for evaluating PN. 
On the basis of these curves one would predict g, to be around 19, but 
with a rather large uncertainty; this is essentially the same conclusion 
as was drawn in the previous section. Actually g, = 14.4, and we must 
conclude that the prediction of the Pad6 method for this problem are 
useless beyond about g = 11. (Near g = 14 we would predict an anti- 
resonance, when in fact there is a resonance.) 
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The reason why we get unreliable predictions at large g is that the 
input values of the Born terms are not exact. One expects to pay some 
price for finite numerical accuracy, but it is very sobering to realize 
just how sensitive the distant extrapolation is to very small changes in 
the values of the Born terms. 

We have not attempted a numerical analysis of this procedure to 
answer such questions as “How is it that the number g,/g, z 8.6 im- 
plies the numerical error figure rv IO’?” The PadC method has been 
very successful in other problems [412 of finding a singularity in a 
function, given several terms of its power series about some distant 
origin, Perhaps the difficulty with the scattering problem is that one can 
say nothing about ,f(g) for g -+ 00, and this lack of constraint on Plv 
leads to the troubles we have found. 

111. SUMMARY 

While our example was taken from potential scattering, we are not 
really interested in solving such simple (two-) one-body problems: any 
method works, and directly integrating the Schroinger equation is still 
the easiest method to answer all numerical questions. The hard and in- 
teresting problems we think of involve several bodies interacting with 
strong forces. What we want to calculate are bound state eigenvalues 
and scattering state phase shifts. The Born series is not at all useful in 
finding the former. Let us now consider the practicalities of the latter 
calculation. If we have to consider N bodies in 3-dimensional space, 
then the nth order Born term requires the evaluation of a-fold integrals 
each in 3(N - 1) dimensions. The integrands may be simple or compli- 
cated depending on the particular form for the Green’s function and the 
interaction, but one must expect to be forced to use computing machines 
to make any significant headway. If the interaction is really strong, 
then one must go to quite high order Born terms. The calculation of 
each of these becomes steadily harder and harder: therefore one expects 
to obtain the higher Born terms with less and less numerical accuracy. 
The whole point of our example is then to show that one might never 

z Some mention of the problem of numerical accuracy-as distinct from the formal 
analysis of convergence of the Pad6 method-may be found in the paper by G. A. 
Baker, Jr., G. S. Rushbrooke, and H. E. Gilbert, Phys. Rev. 135, Al272 (1964). 
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solve the problem this way, since greater and greater numerical accuracy 
is needed to extrapolate the Born series far away from g = 0. 

APPENDIX A 

In general the nth term of the Born series looks like 

1 q’ VGVG...VGVv, V appears n times. t-41) 

At zero energy the Green’s function is given by 

642) 

and the plane wave functions q~ are simply unity. So we are led to con- 
sider the recursively defined functions 

F%(r) = sr rf2dr’ $- exp :,- I’) F,-,(r’); F,, = I. 

Next we make a Laplace transform 

so that we have the system 

h(P) = ,; ,)< $&%-I@ - 1) 3 

where the desired terms of the Born series are given by 

T,, = u,(l). 

The first few terms are easily found analytically, 

uo = 4P) 

u1 = O(1 - p) 

(A3) 

(A4) 

(A5) 

W) 

(A7) 



28 SCHWARTZ 

and the higher ones are obtained by numerical integration. A sequence 
of mesh sizes were used and the final results were obtained by extra- 
polation to zero mesh size. 
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